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Exercise 5.6.14 If A is an m×n matrix, it can be proved
that there exists a unique n×m matrix A# satisfying the
following four conditions: AA#A = A; A#AA# = A#; AA#

and A#A are symmetric. The matrix A# is called the gen-

eralized inverse of A, or the Moore-Penrose inverse.

a. If A is square and invertible, show that A# = A−1.

b. If rank A = m, show that A# = AT (AAT )−1.

c. If rank A = n, show that A# = (AT A)−1AT .

5.7 An Application to Correlation and Variance

Suppose the heights h1, h2, . . . , hn of n men are measured. Such a data set is called a sample of the heights
of all the men in the population under study, and various questions are often asked about such a sample:
What is the average height in the sample? How much variation is there in the sample heights, and how can
it be measured? What can be inferred from the sample about the heights of all men in the population? How
do these heights compare to heights of men in neighbouring countries? Does the prevalence of smoking
affect the height of a man?

The analysis of samples, and of inferences that can be drawn from them, is a subject called mathemat-

ical statistics, and an extensive body of information has been developed to answer many such questions.
In this section we will describe a few ways that linear algebra can be used.

It is convenient to represent a sample {x1, x2, . . . , xn} as a sample vector15 x =
[

x1 x2 · · · xn

]

in Rn. This being done, the dot product in Rn provides a convenient tool to study the sample and describe
some of the statistical concepts related to it. The most widely known statistic for describing a data set is
the sample mean x defined by16

x = 1
n
(x1 + x2 + · · ·+ xn) =

1
n

n

∑
i=1

xi

The mean x is “typical” of the sample values xi, but may not itself be one of them. The number xi− x is
called the deviation of xi from the mean x. The deviation is positive if xi > x and it is negative if xi < x.
Moreover, the sum of these deviations is zero:

n

∑
i=1

(xi− x) =

(
n

∑
i=1

xi

)
−nx = nx−nx = 0 (5.6)
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This is described by saying that the sample mean x is central to the
sample values xi.

If the mean x is subtracted from each data value xi, the resulting data
xi− x are said to be centred. The corresponding data vector is

xc =
[

x1− x x2− x · · · xn− x
]

and (5.6) shows that the mean xc = 0. For example, we have plotted the
sample x =

[
−1 0 1 4 6

]
in the first diagram. The mean is x = 2,

15We write vectors in Rn as row matrices, for convenience.
16The mean is often called the “average” of the sample values xi, but statisticians use the term “mean”.
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and the centred sample xc =
[
−3 −2 −1 2 4

]
is also plotted. Thus, the effect of centring is to shift

the data by an amount x (to the left if x is positive) so that the mean moves to 0.

Another question that arises about samples is how much variability there is in the sample

x =
[

x1 x2 · · · xn

]

that is, how widely are the data “spread out” around the sample mean x. A natural measure of variability
would be the sum of the deviations of the xi about the mean, but this sum is zero by (5.6); these deviations
cancel out. To avoid this cancellation, statisticians use the squares (xi−x)2 of the deviations as a measure
of variability. More precisely, they compute a statistic called the sample variance s2

x defined17 as follows:

s2
x =

1
n−1 [(x1− x)2 +(x2− x)2 + · · ·+(xn− x)2] = 1

n−1

n

∑
i=1

(xi− x)2

The sample variance will be large if there are many xi at a large distance from the mean x, and it will
be small if all the xi are tightly clustered about the mean. The variance is clearly nonnegative (hence the
notation s2

x), and the square root sx of the variance is called the sample standard deviation.

The sample mean and variance can be conveniently described using the dot product. Let

1 =
[

1 1 · · · 1
]

denote the row with every entry equal to 1. If x =
[

x1 x2 · · · xn

]
, then x · 1 = x1 + x2 + · · ·+ xn, so

the sample mean is given by the formula
x = 1

n
(x ·1)

Moreover, remembering that x is a scalar, we have x1 =
[

x x · · · x
]
, so the centred sample vector xc

is given by
xc = x− x1 =

[
x1− x x2− x · · · xn− x

]

Thus we obtain a formula for the sample variance:

s2
x =

1
n−1‖xc‖2 = 1

n−1‖x− x1‖2

Linear algebra is also useful for comparing two different samples. To illustrate how, consider two exam-
ples.

Doctor Visits

Days
Sick

The following table represents the number of sick days at work per
year and the yearly number of visits to a physician for 10 individuals.

Individual 1 2 3 4 5 6 7 8 9 10
Doctor visits 2 6 8 1 5 10 3 9 7 4

Sick days 2 4 8 3 5 9 4 7 7 2

The data are plotted in the scatter diagram where it is evident that,
roughly speaking, the more visits to the doctor the more sick days. This is
an example of a positive correlation between sick days and doctor visits.

17Since there are n sample values, it seems more natural to divide by n here, rather than by n−1. The reason for using n−1
is that then the sample variance s2x provides a better estimate of the variance of the entire population from which the sample
was drawn.
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Vitamin C Doses

Days
Sick

Now consider the following table representing the daily doses of vita-
min C and the number of sick days.

Individual 1 2 3 4 5 6 7 8 9 10
Vitamin C 1 5 7 0 4 9 2 8 6 3
Sick days 5 2 2 6 2 1 4 3 2 5

The scatter diagram is plotted as shown and it appears that the more vita-
min C taken, the fewer sick days. In this case there is a negative correla-

tion between daily vitamin C and sick days.

In both these situations, we have paired samples, that is observations of two variables are made for ten
individuals: doctor visits and sick days in the first case; daily vitamin C and sick days in the second case.
The scatter diagrams point to a relationship between these variables, and there is a way to use the sample
to compute a number, called the correlation coefficient, that measures the degree to which the variables
are associated.

To motivate the definition of the correlation coefficient, suppose two paired samples
x =

[
x1 x2 · · · xn

]
, and y =

[
y1 y2 · · · yn

]
are given and consider the centred samples

xc =
[

x1− x x2− x · · · xn− x
]

and yc =
[

y1− y y2− y · · · yn− y
]

If xk is large among the xi’s, then the deviation xk− x will be positive; and xk− x will be negative if xk

is small among the xi’s. The situation is similar for y, and the following table displays the sign of the
quantity (xi− x)(yk− y) in all four cases:

Sign of (xi− x)(yk− y) :

xi large xi small
yi large positive negative
yi small negative positive

Intuitively, if x and y are positively correlated, then two things happen:

1. Large values of the xi tend to be associated with large values of the yi, and

2. Small values of the xi tend to be associated with small values of the yi.

It follows from the table that, if x and y are positively correlated, then the dot product

xc ·yc =
n

∑
i=1

(xi− x)(yi− y)

is positive. Similarly xc ·yc is negative if x and y are negatively correlated. With this in mind, the sample

correlation coefficient18 r is defined by

r = r(x, y) =
xc·yc

‖xc‖ ‖yc‖

18The idea of using a single number to measure the degree of relationship between different variables was pioneered by
Francis Galton (1822–1911). He was studying the degree to which characteristics of an offspring relate to those of its parents.
The idea was refined by Karl Pearson (1857–1936) and r is often referred to as the Pearson correlation coefficient.
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Bearing the situation in R3 in mind, r is the cosine of the “angle” between the vectors xc and yc, and so
we would expect it to lie between −1 and 1. Moreover, we would expect r to be near 1 (or −1) if these
vectors were pointing in the same (opposite) direction, that is the “angle” is near zero (or π).

This is confirmed by Theorem 5.7.1 below, and it is also borne out in the examples above. If we
compute the correlation between sick days and visits to the physician (in the first scatter diagram above)
the result is r = 0.90 as expected. On the other hand, the correlation between daily vitamin C doses and
sick days (second scatter diagram) is r =−0.84.

However, a word of caution is in order here. We cannot conclude from the second example that taking
more vitamin C will reduce the number of sick days at work. The (negative) correlation may arise because
of some third factor that is related to both variables. For example, case it may be that less healthy people
are inclined to take more vitamin C. Correlation does not imply causation. Similarly, the correlation
between sick days and visits to the doctor does not mean that having many sick days causes more visits to
the doctor. A correlation between two variables may point to the existence of other underlying factors, but
it does not necessarily mean that there is a causality relationship between the variables.

Our discussion of the dot product in Rn provides the basic properties of the correlation coefficient:

Theorem 5.7.1

Let x =
[

x1 x2 · · · xn

]
and y =

[
y1 y2 · · · yn

]
be (nonzero) paired samples, and let

r = r(x, y) denote the correlation coefficient. Then:

1. −1≤ r ≤ 1.

2. r = 1 if and only if there exist a and b > 0 such that yi = a+bxi for each i.

3. r =−1 if and only if there exist a and b < 0 such that yi = a+bxi for each i.

Proof. The Cauchy inequality (Theorem 5.3.2) proves (1), and also shows that r = ±1 if and only if one
of xc and yc is a scalar multiple of the other. This in turn holds if and only if yc = bxc for some b 6= 0, and
it is easy to verify that r = 1 when b > 0 and r =−1 when b < 0.

Finally, yc = bxc means yi−y = b(xi−x) for each i; that is, yi = a+bxi where a = y−bx. Conversely,
if yi = a+ bxi, then y = a+ bx (verify), so y1− y = (a+ bxi)− (a+ bx) = b(x1− x) for each i. In other
words, yc = bxc. This completes the proof.

Properties (2) and (3) in Theorem 5.7.1 show that r(x, y) = 1 means that there is a linear relation
with positive slope between the paired data (so large x values are paired with large y values). Similarly,
r(x, y) =−1 means that there is a linear relation with negative slope between the paired data (so small x

values are paired with small y values). This is borne out in the two scatter diagrams above.

We conclude by using the dot product to derive some useful formulas for computing variances and
correlation coefficients. Given samples x =

[
x1 x2 · · · xn

]
and y =

[
y1 y2 · · · yn

]
, the key ob-

servation is the following formula:
xc ·yc = x ·y−nx y (5.7)

Indeed, remembering that x and y are scalars:
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xc ·yc = (x− x1) · (y− y1)

= x ·y−x · (y1)− (x1) ·y+(x1)(y1)

= x ·y− y(x ·1)− x(1 ·y)+ xy(1 ·1)
= x ·y− y(nx)− x(ny)+ x y(n)

= x ·y−nx y

Taking y = x in (5.7) gives a formula for the variance s2
x =

1
n−1‖xc‖2 of x.

Variance Formula

If x is a sample vector, then s2
x =

1
n−1

(
‖xc‖2−nx2

)
.

We also get a convenient formula for the correlation coefficient, r = r(x, y) =
xc·yc

‖xc‖ ‖yc‖ . Moreover, (5.7)

and the fact that s2
x =

1
n−1‖xc‖2 give:

Correlation Formula

If x and y are sample vectors, then

r = r(x, y) =
x ·y−nx y

(n−1)sxsy

Finally, we give a method that simplifies the computations of variances and correlations.

Data Scaling

Let x =
[

x1 x2 · · · xn

]
and y =

[
y1 y2 · · · yn

]
be sample vectors. Given constants a, b,

c, and d, consider new samples z =
[

z1 z2 · · · zn

]
and w =

[
w1 w2 · · · wn

]
where

zi = a+bxi, for each i and wi = c+dyi for each i. Then:

a. z = a+bx

b. s2
z = b2s2

x , so sz = |b|sx

c. If b and d have the same sign, then r(x, y) = r(z, w).

The verification is left as an exercise. For example, if x =
[

101 98 103 99 100 97
]
, subtracting

100 yields z =
[

1 −2 3 −1 0 −3
]
. A routine calculation shows that z = −1

3 and s2
z = 14

3 , so
x = 100− 1

3 = 99.67, and s2
z =

14
3 = 4.67.
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Exercises for 5.7

Exercise 5.7.1 The following table gives IQ scores for 10 fathers and their eldest sons. Calculate the means, the
variances, and the correlation coefficient r. (The data scaling formula is useful.)

1 2 3 4 5 6 7 8 9 10
Father’s IQ 140 131 120 115 110 106 100 95 91 86
Son’s IQ 130 138 110 99 109 120 105 99 100 94

Exercise 5.7.2 The following table gives the number of years of education and the annual income (in thousands)
of 10 individuals. Find the means, the variances, and the correlation coefficient. (Again the data scaling formula is
useful.)

Individual 1 2 3 4 5 6 7 8 9 10
Years of education 12 16 13 18 19 12 18 19 12 14
Yearly income 31 48 35 28 55 40 39 60 32 35
(1000’s)

Exercise 5.7.3 If x is a sample vector, and xc is the centred sample, show that xc = 0 and the standard deviation of
xc is sx.

Exercise 5.7.4 Prove the data scaling formulas found on page 326: (a), (b), and (c).

Supplementary Exercises for Chapter 5

Exercise 5.1 In each case either show that the state-
ment is true or give an example showing that it is false.
Throughout, x, y, z, x1, x2, . . . , xn denote vectors in Rn.

a. If U is a subspace of Rn and x+ y is in U , then x

and y are both in U .

b. If U is a subspace of Rn and rx is in U , then x is
in U .

c. If U is a nonempty set and sx+ ty is in U for any
s and t whenever x and y are in U , then U is a
subspace.

d. If U is a subspace of Rn and x is in U , then −x is
in U .

e. If {x, y} is independent, then {x, y, x+ y} is in-
dependent.

f. If {x, y, z} is independent, then {x, y} is inde-
pendent.

g. If {x, y} is not independent, then {x, y, z} is not
independent.

h. If all of x1, x2, . . . , xn are nonzero, then
{x1, x2, . . . , xn} is independent.

i. If one of x1, x2, . . . , xn is zero, then
{x1, x2, . . . , xn} is not independent.

j. If ax+by+cz = 0 where a, b, and c are in R, then
{x, y, z} is independent.

k. If {x, y, z} is independent, then ax+by+ cz = 0

for some a, b, and c in R.

l. If {x1, x2, . . . , xn} is not independent, then
t1x1 + t2x2 + · · ·+ tnxn = 0 for ti in R not all zero.

m. If {x1, x2, . . . , xn} is independent, then
t1x1 + t2x2 + · · ·+ tnxn = 0 for some ti in R.

n. Every set of four non-zero vectors in R4 is a basis.


